公式動画ピックアップ

AAPL   ADBE   ADSK   AIG   AMGN   AMZN   BABA   BAC   BL   BOX   C   CHGG   CLDR   COKE   COUP   CRM   CROX   DDOG   DELL   DIS   DOCU   DOMO   ESTC   F   FIVN   GILD   GRUB   GS   GSK   H   HD   HON   HPE   HSBC   IBM   INST   INTC   INTU   IRBT   JCOM   JNJ   JPM   LLY   LMT   M   MA   MCD   MDB   MGM   MMM   MSFT   MSI   NCR   NEM   NEWR   NFLX   NKE   NOW   NTNX   NVDA   NYT   OKTA   ORCL   PD   PG   PLAN   PS   RHT   RNG   SAP   SBUX   SHOP   SMAR   SPLK   SQ   TDOC   TEAM   TSLA   TWOU   TWTR   TXN   UA   UAL   UL   UTX   V   VEEV   VZ   WDAY   WFC   WK   WMT   WORK   YELP   ZEN   ZM   ZS   ZUO  

  公式動画&関連する動画 [Confidence scores for Box AI Extract: Know when to rely on your extractions]

When you’re extracting metadata from documents with AI, a common question might be: How much should I trust the result?Confidence scores in Box AI Extract provide a probabilistic measure of extraction accuracy at the field level. Instead of treating every extracted value the same, confidence scores help you understand where the model is more confident—and where closer review may be needed.In this video, I show how confidence scores work with the /ai/extract_structured endpoint and what the scores in the response represent. Each confidence score is a value between 0 and 1 that estimates the likelihood that an extracted field value is correct.Confidence scores are designed to support human-in-the-loop workflows. They’re not guarantees, and even high-confidence extractions can be incorrect, but they provide useful visibility into model uncertainty so teams can prioritize review more effectively.If you’re building document extraction workflows with Box AI, this video walks through how confidence scores can help you decide when to trust automation—and when to take a closer look.
 137      3