公式動画ピックアップ

AAPL   ADBE   ADSK   AIG   AMGN   AMZN   BABA   BAC   BL   BOX   C   CHGG   CLDR   COKE   COUP   CRM   CROX   DDOG   DELL   DIS   DOCU   DOMO   ESTC   F   FIVN   GILD   GRUB   GS   GSK   H   HD   HON   HPE   HSBC   IBM   INST   INTC   INTU   IRBT   JCOM   JNJ   JPM   LLY   LMT   M   MA   MCD   MDB   MGM   MMM   MSFT   MSI   NCR   NEM   NEWR   NFLX   NKE   NOW   NTNX   NVDA   NYT   OKTA   ORCL   PD   PG   PLAN   PS   RHT   RNG   SAP   SBUX   SHOP   SMAR   SPLK   SQ   TDOC   TEAM   TSLA   TWOU   TWTR   TXN   UA   UAL   UL   UTX   V   VEEV   VZ   WDAY   WFC   WK   WMT   WORK   YELP   ZEN   ZM   ZS   ZUO  

  公式動画&関連する動画 [Demo: Streamline Editorial Operations with gen AI and MongoDB]

If you'd like to check out the source code to this solution, visit our Github repositories below: Content Lab UI: https://github.com/mongodb-industry-solutions/content-lab-ui Content Lab Search Microservice: https://github.com/mongodb-industry-solutions/content-lab-backend-search Content Lab Writing Assistant Microservice: https://github.com/mongodb-industry-solutions/content-lab-backend-writing-assistant Subscribe to MongoDB YouTube→ https://mdb.link/subscribe This video covers how to streamline editorial operations with GenAI and MongoDB to gain real-time insights, accelerate drafting, and ensure reliable content delivery. Our interns showcase the demo they built and explain how they developed this solution with a microservices architecture. Read the related blog: https://mdb.link/5sdjP7Pl48A-blog Solutions Library: https://mdb.link/5sdjP7Pl48A-solutions Chapters: 00:00 - The Modern Content Challenge 00:32 - Why Traditional Workflows Fail 01:39 - The High Cost of Delay 02:20 - Solution: Introducing Content Lab 02:54 - Live Demo: Choosing a Persona 03:15 - Analyzing Trending Data 04:00 - Discovering & Filtering Topics 04:40 - The AI Writing Assistant 05:45 - Applying a Persona with the Refine Tool 06:29 - Saving & Publishing Your Draft 07:09 - The Technical Magic Behind Content Lab 07:30 - Our Microservices Architecture 08:22 - Leveraging MongoDB Atlas & Vector Search 09:02 - How MongoDB Processes & Enriches Data 10:04 - Our Flexible Data Model in MongoDB 11:11 - Using Aggregation Pipelines & Atlas Vector Search #mongodb #media #demo #db #nosql #genai Visit Mongodb.com → https://mdb.link/MongoDB Read the MongoDB Blog → https://mdb.link/Blog Read the Developer Blog → https://mdb.link/developerblog
 92      3