公式動画ピックアップ
AAPL
ADBE
ADSK
AIG
AMGN
AMZN
BABA
BAC
BL
BOX
C
CHGG
CLDR
COKE
COUP
CRM
CROX
DDOG
DELL
DIS
DOCU
DOMO
ESTC
F
FIVN
GILD
GRUB
GS
GSK
H
HD
HON
HPE
HSBC
IBM
INST
INTC
INTU
IRBT
JCOM
JNJ
JPM
LLY
LMT
M
MA
MCD
MDB
MGM
MMM
MSFT
MSI
NCR
NEM
NEWR
NFLX
NKE
NOW
NTNX
NVDA
NYT
OKTA
ORCL
PD
PG
PLAN
PS
RHT
RNG
SAP
SBUX
SHOP
SMAR
SPLK
SQ
TDOC
TEAM
TSLA
TWOU
TWTR
TXN
UA
UAL
UL
UTX
V
VEEV
VZ
WDAY
WFC
WK
WMT
WORK
YELP
ZEN
ZM
ZS
ZUO
公式動画&関連する動画 [Building a Semantic Search Application with MongoDB and Quarkus using Vector Search]
✅ Try MongoDB 8.0 → https://mdb.link/91SzYGDmFoI
✅ Sign-up for a free cluster → https://mdb.link/91SzYGDmFoI-try
✅ Article link → https://mdb.link/91SzYGDmFoI-read
-
Discover how to harness the power of MongoDB's vector search capability to build a semantic search application using the Quarkus framework. In this comprehensive tutorial, we'll guide you step-by-step from understanding vector search fundamentals to implementing a functional Java application. Learn how to use Gemini AI for vector embeddings, create optimized queries, and set up your MongoDB Atlas cluster for seamless integration. Whether you're new to vector search or looking to enhance your generative AI applications, this video provides all the tools you need to get started.
-
📚 Git repo: https://github.com/mongodb-developer/mongodb-vector-search-with-quarkus
Resources:
📚 Vector Embeddings: https://mdb.link/91SzYGDmFoI-models
📚 Gemini AI: https://ai.google.dev/api?lang=python
https://ai.google.dev/gemini-api/docs/api-key
Similarity values:
📚 Euclidean: https://en.wikipedia.org/wiki/Euclidean_distance
📚 Cosine: https://en.wikipedia.org/wiki/Cosine_similarity
📚 Dot Product: https://en.wikipedia.org/wiki/Dot_product
157
7