公式動画ピックアップ

AAPL   ADBE   ADSK   AIG   AMGN   AMZN   BABA   BAC   BL   BOX   C   CHGG   CLDR   COKE   COUP   CRM   CROX   DDOG   DELL   DIS   DOCU   DOMO   ESTC   F   FIVN   GILD   GRUB   GS   GSK   H   HD   HON   HPE   HSBC   IBM   INST   INTC   INTU   IRBT   JCOM   JNJ   JPM   LLY   LMT   M   MA   MCD   MDB   MGM   MMM   MSFT   MSI   NCR   NEM   NEWR   NFLX   NKE   NOW   NTNX   NVDA   NYT   OKTA   ORCL   PD   PG   PLAN   PS   RHT   RNG   SAP   SBUX   SHOP   SMAR   SPLK   SQ   TDOC   TEAM   TSLA   TWOU   TWTR   TXN   UA   UAL   UL   UTX   V   VEEV   VZ   WDAY   WFC   WK   WMT   WORK   YELP   ZEN   ZM   ZS   ZUO  

  公式動画&関連する動画 [Superlinked: Vector Search Over Complex Semi-Structured Data]

Try MongoDB 8.0 → https://trymongodb.com/3WGNhFQ Subscribe to MongoDB YouTube→ https://mdb.link/subscribe Vector embeddings are poised to power a variety of real-time use cases, from RAG to Semantic Search to Fraud detection. You saw the demos, but do you know what it actually takes to launch vector-powered systems into production? Hopefully, you are not thinking about “adding heuristic filters”, “building complex ranking models” or “fine-tuning LLMs”. You need a way to combine large pre-trained models that process the unstructured parts of your data like text and images with models trained on your structured data - clicks, relationships, timestamps and beyond. You need a way to express your objective when you generate the search vector. And importantly - you need to build feedback loops. In this session, we will talk about the design of production-grade vector-powered systems that are easy to control, easy to deploy and powerful enough to give your users what they really want, and how Superlinked's open-source framework makes Vector Search more accessible to everyone in the MongoDB ecosystem. Visit Mongodb.com → https://www.mongodb.com Read the MongoDB Blog → https://www.mongodb.com/blog Check out the MongoDB Developer Center → https://www.mongodb.com/developer
 444      16