公式動画ピックアップ
AAPL
ADBE
ADSK
AIG
AMGN
AMZN
BABA
BAC
BL
BOX
C
CHGG
CLDR
COKE
COUP
CRM
CROX
DDOG
DELL
DIS
DOCU
DOMO
ESTC
F
FIVN
GILD
GRUB
GS
GSK
H
HD
HON
HPE
HSBC
IBM
INST
INTC
INTU
IRBT
JCOM
JNJ
JPM
LLY
LMT
M
MA
MCD
MDB
MGM
MMM
MSFT
MSI
NCR
NEM
NEWR
NFLX
NKE
NOW
NTNX
NVDA
NYT
OKTA
ORCL
PD
PG
PLAN
PS
RHT
RNG
SAP
SBUX
SHOP
SMAR
SPLK
SQ
TDOC
TEAM
TSLA
TWOU
TWTR
TXN
UA
UAL
UL
UTX
V
VEEV
VZ
WDAY
WFC
WK
WMT
WORK
YELP
ZEN
ZM
ZS
ZUO
公式動画&関連する動画 [Scaling Search the MongoDB Way]
Watch more from .local San Francisco → https://www.youtube.com/playlist?list=PL4RCxklHWZ9s7IrElTzddaZ2w5uupd6TQ
Subscribe to MongoDB YouTube→ https://mdb.link/subscribe
MongoDB Search and Vector Search bring full-text, vector, and hybrid retrieval into a single, managed platform, integrating the database, search engine, and sync mechanism so developers can index and query directly from familiar MongoDB APIs. In this talk, we peel back the layers of the architecture: how mongod and mongot cooperate to manage index definitions, build and maintain indexes, and execute $vectorSearch queries end-to-end. We’ll walk the lifecycle of an index, then trace the life of a query through the system. Finally, we’ll zoom out to scaling characteristics in replica sets and sharded clusters, and close with the next chapter: opening mongot to the community.
00:00:00 Introduction to the Builder Stage
00:00:59 Overview: Search & Vector Search Capabilities
00:02:00 Three Design Principles for Search Architecture
00:03:45 Leveraging Apache Lucene for Search
00:05:16 Index Lifecycle Management & Sequence Diagrams
00:06:50 Replication: Initial Sync vs. Steady State
00:10:07 Using the Oplog & Change Streams for Indexing
00:12:44 Managing Large Datasets with Iterative Initial Sync
00:15:03 Query Execution Flow & Document Retrieval
00:16:51 Deployment: Sidecar vs. Dedicated Search Nodes
00:19:31 Scaling Search with Sharding & Scatter-Gather
00:23:38 Roadmap: Binary Quantization & Auto-Scaling
00:25:14 Q&A: Search Scoring (BM25) & Vector Similarity
Visit Mongodb.com → https://mdb.link/MongoDB
Read the MongoDB Blog → https://mdb.link/Blog
Read the Developer Blog → https://mdb.link/developerblog
315
10