公式動画ピックアップ
AAPL
ADBE
ADSK
AIG
AMGN
AMZN
BABA
BAC
BL
BOX
C
CHGG
CLDR
COKE
COUP
CRM
CROX
DDOG
DELL
DIS
DOCU
DOMO
ESTC
F
FIVN
GILD
GRUB
GS
GSK
H
HD
HON
HPE
HSBC
IBM
INST
INTC
INTU
IRBT
JCOM
JNJ
JPM
LLY
LMT
M
MA
MCD
MDB
MGM
MMM
MSFT
MSI
NCR
NEM
NEWR
NFLX
NKE
NOW
NTNX
NVDA
NYT
OKTA
ORCL
PD
PG
PLAN
PS
RHT
RNG
SAP
SBUX
SHOP
SMAR
SPLK
SQ
TDOC
TEAM
TSLA
TWOU
TWTR
TXN
UA
UAL
UL
UTX
V
VEEV
VZ
WDAY
WFC
WK
WMT
WORK
YELP
ZEN
ZM
ZS
ZUO
公式動画&関連する動画 [SF Data Mining MeetUp hosted by Marin Software]
Listen to AMPLab’s (Algorithms Machines People) Daniel Crankshaw talk about Velox! What’s Velox?
Velox is a new component of the Berkeley Data Analytics Stack that addresses the critical missing component of current analytics process: the deployment and serving of models at scale.
Filmed March 11, 2015 at Marin Software SF, CA.
Thanks to everyone who came out to this event! Here's a link to Dan Crankshaw's slides: http://www.slideshare.net/dscrankshaw/velox-at-sf-data-mining-meetup
Here are a few of the papers Dan mentions in the presentation:
"A Contextual-Bandit Approach to
Personalized News Article Recommendation," Lihong Li et al (http://www.research.rutgers.edu/~lihong/pub/Li10Contextual.pdf)
"LASER: a scalable response prediction platform for online advertising" Deepak Agrawal et al. from LinkedIn (http://dl.acm.org/citation.cfm?id=2556252)
And the two on fast top-k:
"Fast top-k similarity queries via matrix compression" Yucheng Low et al. (http://research.microsoft.com/pubs/171030/topk.pdf)
"Asymmetric LSH (ALSH) for Sublinear Time
Maximum Inner Product Search (MIPS)" Shrivastava et al. (http://papers.nips.cc/paper/5329-asymmetric-lsh-alsh-for-sublinear-time-maximum-inner-product-search-mips.pdf)
917
4