公式動画ピックアップ

AAPL   ADBE   ADSK   AIG   AMGN   AMZN   BABA   BAC   BL   BOX   C   CHGG   CLDR   COKE   COUP   CRM   CROX   DDOG   DELL   DIS   DOCU   DOMO   ESTC   F   FIVN   GILD   GRUB   GS   GSK   H   HD   HON   HPE   HSBC   IBM   INST   INTC   INTU   IRBT   JCOM   JNJ   JPM   LLY   LMT   M   MA   MCD   MDB   MGM   MMM   MSFT   MSI   NCR   NEM   NEWR   NFLX   NKE   NOW   NTNX   NVDA   NYT   OKTA   ORCL   PD   PG   PLAN   PS   RHT   RNG   SAP   SBUX   SHOP   SMAR   SPLK   SQ   TDOC   TEAM   TSLA   TWOU   TWTR   TXN   UA   UAL   UL   UTX   V   VEEV   VZ   WDAY   WFC   WK   WMT   WORK   YELP   ZEN   ZM   ZS   ZUO  

  公式動画&関連する動画 [SF Data Mining MeetUp hosted by Marin Software]

Listen to AMPLab’s (Algorithms Machines People) Daniel Crankshaw talk about Velox! What’s Velox? Velox is a new component of the Berkeley Data Analytics Stack that addresses the critical missing component of current analytics process: the deployment and serving of models at scale. Filmed March 11, 2015 at Marin Software SF, CA. Thanks to everyone who came out to this event! Here's a link to Dan Crankshaw's slides: http://www.slideshare.net/dscrankshaw/velox-at-sf-data-mining-meetup Here are a few of the papers Dan mentions in the presentation: "A Contextual-Bandit Approach to Personalized News Article Recommendation," Lihong Li et al (http://www.research.rutgers.edu/~lihong/pub/Li10Contextual.pdf) "LASER: a scalable response prediction platform for online advertising" Deepak Agrawal et al. from LinkedIn (http://dl.acm.org/citation.cfm?id=2556252) And the two on fast top-k: "Fast top-k similarity queries via matrix compression" Yucheng Low et al. (http://research.microsoft.com/pubs/171030/topk.pdf) "Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS)" Shrivastava et al. (http://papers.nips.cc/paper/5329-asymmetric-lsh-alsh-for-sublinear-time-maximum-inner-product-search-mips.pdf)
 917      4