公式動画ピックアップ

AAPL   ADBE   ADSK   AIG   AMGN   AMZN   BABA   BAC   BL   BOX   C   CHGG   CLDR   COKE   COUP   CRM   CROX   DDOG   DELL   DIS   DOCU   DOMO   ESTC   F   FIVN   GILD   GRUB   GS   GSK   H   HD   HON   HPE   HSBC   IBM   INST   INTC   INTU   IRBT   JCOM   JNJ   JPM   LLY   LMT   M   MA   MCD   MDB   MGM   MMM   MSFT   MSI   NCR   NEM   NEWR   NFLX   NKE   NOW   NTNX   NVDA   NYT   OKTA   ORCL   PD   PG   PLAN   PS   RHT   RNG   SAP   SBUX   SHOP   SMAR   SPLK   SQ   TDOC   TEAM   TSLA   TWOU   TWTR   TXN   UA   UAL   UL   UTX   V   VEEV   VZ   WDAY   WFC   WK   WMT   WORK   YELP   ZEN   ZM   ZS   ZUO  

  公式動画&関連する動画 [Lossless LLM inference acceleration with Speculators]

High latency is the primary bottleneck for delivering responsive, user-facing large language model (LLM) applications. How can you significantly accelerate LLM inference without sacrificing model accuracy? Red Hat’s Mark Kurtz and Megan Flynn examine speculative decoding, a technique that uses a smaller, faster model—the "speculator"—to draft multiple tokens ahead of the main model, or the "verifier". The result is lossless inference acceleration, leading to faster, cheaper, and high-accuracy LLM deployments. 🔗Read more about Speculators: https://developers.redhat.com/articles/2025/11/19/speculators-standardized-production-ready-speculative-decoding 00:00 Introduction 00:45 The Latency Challenge in LLMs 03:57 What is Speculative Decoding? 16:04 User Case Flow with Speculators 17:22 Current Capabilities and Roadmap 18:26 Why EAGLE3? (A Leading Decoding Algorithm) 19:20 Pretrained Speculators, Ready to Deploy 19:58 One-Command Deployment Example 20:40 Measuring Speculator Effectiveness 22:38 What to Expect in Performance 24:09 Composing Speculative Decoding with Quantization 27:14 Creating and Adapting Your Own Speculators 29:13 Key Takeaways & Conclusion #RedHat #AI #LLMinference #speculators
 141      6