公式動画ピックアップ

AAPL   ADBE   ADSK   AIG   AMGN   AMZN   BABA   BAC   BL   BOX   C   CHGG   CLDR   COKE   COUP   CRM   CROX   DDOG   DELL   DIS   DOCU   DOMO   ESTC   F   FIVN   GILD   GRUB   GS   GSK   H   HD   HON   HPE   HSBC   IBM   INST   INTC   INTU   IRBT   JCOM   JNJ   JPM   LLY   LMT   M   MA   MCD   MDB   MGM   MMM   MSFT   MSI   NCR   NEM   NEWR   NFLX   NKE   NOW   NTNX   NVDA   NYT   OKTA   ORCL   PD   PG   PLAN   PS   RHT   RNG   SAP   SBUX   SHOP   SMAR   SPLK   SQ   TDOC   TEAM   TSLA   TWOU   TWTR   TXN   UA   UAL   UL   UTX   V   VEEV   VZ   WDAY   WFC   WK   WMT   WORK   YELP   ZEN   ZM   ZS   ZUO  

  公式動画&関連する動画 [Random Samples: Towards Combinatorial Interpretability of Neural Computation [May 9, 2025]]

Random Samples is a weekly seminar series that bridges the gap between cutting-edge AI research and real-world application. Designed for AI developers, data scientists, and researchers, each episode explores the latest advancements in AI and how they’re being used in production today. This week's topic: Towards Combinatorial Interpretability of Neural Computation This session introduces a novel combinatorial approach to neural network interpretability, based on MIT CSAIL and IST Austria research. It focuses on relationships within network weights and biases to understand how neural networks compute logic, specifically through the Feature Channel Coding Hypothesis. This hypothesis reveals how networks compute Boolean expressions by mapping features to neuron combinations, forming "codes." Understanding these codes enables decoding network logic without retraining. The session will also discuss "code interference," a complexity-driven phenomenon revealing natural limitations. Attendees will gain a deeper understanding of neural network "thought," making this research critical for more interpretable, scalable, and trustworthy AI. Paper: https://arxiv.org/abs/2504.08842 Blog: https://developers.redhat.com/articles/2025/04/22/how-neural-networks-might-actually-think Subscribe to stay ahead of the curve with weekly deep dives into AI! New episodes drop every Friday.
 268      17