公式動画ピックアップ
AAPL
ADBE
ADSK
AIG
AMGN
AMZN
BABA
BAC
BL
BOX
C
CHGG
CLDR
COKE
COUP
CRM
CROX
DDOG
DELL
DIS
DOCU
DOMO
ESTC
F
FIVN
GILD
GRUB
GS
GSK
H
HD
HON
HPE
HSBC
IBM
INST
INTC
INTU
IRBT
JCOM
JNJ
JPM
LLY
LMT
M
MA
MCD
MDB
MGM
MMM
MSFT
MSI
NCR
NEM
NEWR
NFLX
NKE
NOW
NTNX
NVDA
NYT
OKTA
ORCL
PD
PG
PLAN
PS
RHT
RNG
SAP
SBUX
SHOP
SMAR
SPLK
SQ
TDOC
TEAM
TSLA
TWOU
TWTR
TXN
UA
UAL
UL
UTX
V
VEEV
VZ
WDAY
WFC
WK
WMT
WORK
YELP
ZEN
ZM
ZS
ZUO
公式動画&関連する動画 [Distributed inference with llm-d’s “well-lit paths”]
Large language models like DeepSeek-R1 need a large amount of parameters to perform complex tasks, creating the need for a distributed hardware system. Such a system requires distributed inference to optimize performance. Enter llm-d, an open source framework for distributed LLM inference.
Join Robert Shaw, Red Hat’s Director of Engineering for AI, as he dives into llm-d’s well-lit paths approach—a straightforward and efficient way to manage LLM inference distribution and meet the demands of large-scale AI workloads.
00:00 Introduction
00:43 The Enterprise Generative AI Inference Platform Stack
04:36 The llm-d Architecture Overview
08:39 Introducing Well-Lit Paths
09:54 Intelligent Inference Scheduling: Prefix-Aware & Load-Aware Routing
14:14 P/D Disaggregation: Splitting Prefill and Decode for Efficiency
17:45 Efficient KV Cache Transfer in VLLM with NIXL and RDMA
18:36 Flexible, Configurable Deployments with Heterogeneous Tensor Parallelism
19:32 KV Cache Management
22:58 Mixture of Experts Overview and Model Deployment
24:26 Wide Expert Parallelism (WideEP) Optimizations for MoE Scaling
27:45 Performance Summary and Closing
🔗 Read more about distributed inference: https://www.redhat.com/en/topics/ai/what-is-distributed-inference
#AI #RedHat #Kubernetes #llmd
391
15