公式動画ピックアップ

AAPL   ADBE   ADSK   AIG   AMGN   AMZN   BABA   BAC   BL   BOX   C   CHGG   CLDR   COKE   COUP   CRM   CROX   DDOG   DELL   DIS   DOCU   DOMO   ESTC   F   FIVN   GILD   GRUB   GS   GSK   H   HD   HON   HPE   HSBC   IBM   INST   INTC   INTU   IRBT   JCOM   JNJ   JPM   LLY   LMT   M   MA   MCD   MDB   MGM   MMM   MSFT   MSI   NCR   NEM   NEWR   NFLX   NKE   NOW   NTNX   NVDA   NYT   OKTA   ORCL   PD   PG   PLAN   PS   RHT   RNG   SAP   SBUX   SHOP   SMAR   SPLK   SQ   TDOC   TEAM   TSLA   TWOU   TWTR   TXN   UA   UAL   UL   UTX   V   VEEV   VZ   WDAY   WFC   WK   WMT   WORK   YELP   ZEN   ZM   ZS   ZUO  

  公式動画&関連する動画 [What's new and what's next for Red Hat AI: Your path to enterprise-ready AI | Q4 2025]

Join us for a special Q4 AI product update session of What's New and What's Next, featuring Red Hat AI’s leaders, Joe Fernandes, Steven Huels and the Red Hat AI Product Management team. In this session, you'll learn about: - Latest advancements in Red Hat AI: Discover how our latest releases help you address challenges like cost, complexity, and control. - High-performance, predictable inference: Learn how to deploy any model on any hardware, and any cloud, with built-in observability to track and meet Inference SLOs. - Accelerated AI agent development: We'll showcase features that streamline AI agent development and deployment. - Key new features: Simplify connecting models to your enterprise data, and provide a vendor-neutral platform for managing AI-token-based workloads. - The future of Red Hat AI: Get a sneak peek into what's next for our portfolio. 💡 Learn more about Red Hat AI 3: https://www.redhat.com/en/products/ai 🔗 Link to slides: http://red.ht/ai-whats-new-whats-next-q4-slides 00:00 - Red Hat AI 3 overview with Joe Fernandes and Steven Huels 03:01 - Fast, flexible and scalable inference 04:46 - Red Hat AI Inference Server & Red Hat AI Model Repository 06:05 - What makes model workloads unique? 07:21 - llm-d reimagines how LLMs run on Kubernetes 08:00 - Model-as-a-Service in OpenShift AI 08:42 - Accelerate agentic AI innovation 10:46 - Connecting models to data with a modular approach 12:46 - Scaling AI across the hybrid cloud with the Red Hat AI platform 14:53 - Red Hat AI 3 features across the four pillars summary slide and closing from Joe Fernandes 15:33 - What’s new, what’s next Q4 2025 edition introduction and Red Hat AI overview with Tushar Katarki 19:02 - Red Hat AI 3 announcements overview with Jeff DeMoss 22:16 - Enterprise GenAI inference platform with Erwan Gallen 23:54 - Inference server deep dive: connecting models to the hardware 26:29 - Models deep dive with Rob Greenberg 35:54 - Distributed inference framework with llm-d deep dive with Naina Singh 39:51 - Model-as-a-Service in OpenShift AI deep dive with Adam Bellusci 43:04 - Connecting models to data with Jehlum Vitasta Pandit 47:30 - Synthetic data generation hub with Aditi Saluja 50:49 - Introduction to Training Hub 52:15 - Introduction to Continual post training 55:23 - Evaluation with William Caban 57:13 - RAG with Llama Stack & RAG highlights 59:58 - Kubeflow Trainer with Christoph Gorn 1:04:18 - Red Hat AI Feature Store with Kezia Cook 1:06:46 - Introduction to its-hub with Luke Inglis 1:07:54 - Agentic AI focus areas with Adel Zaalouk 1:19:56 - Generative AI in OpenShift AI 3.0 with Jenny Yi 1:21:32 - Introducing the Gen AI Studio with Peter Double 1:22:52 - AI Platforms with Adam Bellusci 1:25:51 - AI Pipelines with Myriam Fentanes Gutierrez 1:30:51 - AI Safety and Guardrails highlights with Adel Zaalouk 1:34:53 - Introducing Workbenches 2.0 with Kezia Cook 1:37:00 - GPU-as-a-Service with Christoph Gorn 1:41:15 - OpenShift AI dashboard 3.0 with Jenny Yi 1:43:40 - Red Hat AI Accelerator support with Erwan Gallen 1:46:17 - What’s new and next with Red Hat AI Inference Server 1:47:10 - OpenShift AI Roadmap preview with Jeff DeMoss 1:47:53 - Lifecycle updates and closing remarks with Tushar Katarki
 712      23